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The electron-atom scattering problem is formulated by using the Breit-Pauli
hamiltonian, and the Kohn variational principle is derived for this hamiltonian. Two
distinct types of relativistic corrections are considered separately: (1) relativistic
corrections due to the motion of the colliding electron and itsinteraction with the target;
(2) relativistic corrections due to breakdown of LS-coupling in the target. In both of these
cases it is shown that within the Breit-Pauli approximation a collision strength may be
written QwL(z, 7) = Q1(s,7) +a2CE(1,5) + 2*Cl(s,4), where £ is the collision strength
including relativistic corrections and £7* is the non-relativistic collision strength. The
quantities C{} and C%] are contributions of orders «? and a* respectively, relative to
£0r, In the case of corrections of type (1), consistency problems render it difficult to
calculate the term a*C{y reliably. On the other hand, strong semi-empirical evidence
suggests that in the case of corrections of type (2), the a* correction can be reliably

estimated within the framework of existing theory.

By means of Racah algebra it is demonstrated that fine structure interactions
between colliding electron and target give no contributions of order «? provided that
that £rel(z, j) is summed over the fine structure levels of the initial and final target terms.
Breakdown of LS-coupling in the target (due to fine structure interactions among the
target electrons) gives contribution of order «? to the total collision strength. However,
these contributions do nof vanish when the collision strengths are summed over the
fine structure levels of the initial and final terms. Asymptotic expansions for the depen-
dence of 2! upon the nuclear charge Z of the target are derived for corrections of

types (1) and (2).

The present work is discussed in relation to recent work by Carse & Walker (1973) and
Walker (1974), who have studied the electron-hydrogen scattering problem in a formu-
lation based upon the Dirac equation. Practical procedures for carrying out calculations
in the framework of the present theory are discussed, and one such procedure is formu-

lated in some detail.

1. INTRODUCGTION

PAGE

613
613
613
613

613
618

619

620
621
622

In recent years a number of theoretical efforts have been directed at the investigation of relati-

vistic effectsin electron-atom scattering. These efforts may be divided into roughly four categories:
(i) Calculations of elastic scattering cross-sections (total and partial) and electron spin

polarizations in electron-heavy atom scattering. Such calculations have been reviewed by

Walker (1970).
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ELECTRON-ATOM SCATTERING 589

(ii) Calculations, again based upon the Dirac equation, of elastic and inelastic cross-sections
and electron-spin polarizations in the scattering of electrons by hydrogen-like ions. Carse &
Walker (1973) have formulated the theory of such calculations, and Walker (1974) has made
calculations of the above quantities for a number of values of the nuclear charge Z in the range
2 < Z < 100.

(iii) Essentially non-relativistic calculations, in which non-relativistic R-matrices in LS-
coupling are transformed into a representation which enables one to work out collisional data
connecting the target fine structure states. The effects of intermediate coupling in the target may
be taken into account in this method. A program written by Saraph (1972) can produce fine
structure collision strengths from LS-coupling R-matrices by means of this technique.

(iv) Once again, essentially non-relativistic calculations, in which the fine structure splitting
of the target energies is taken into account when calculating the energy of the colliding electron.
Burke & Mitchell (1974) recently reported a calculation of this type. In their study of low energy
elastic scattering of electrons by caesium, they took into account the fine structure splitting of the
6p state when using a two-state close-coupling approximation to calculate elastic cross-sections.

The calculations (i) and (ii) of Walker give considerable insight into the nature of relativistic
effects in scattering problems. However, in these types of calculations the various relativistic
effects are not separated; consequently it could be difficult to assess their importance in any
particular type of cross-section. With regard to calculations in category (iii), it would be inter-
esting to assess the Z-dependence of intermediate coupling collision strengths obtained in this
manner, and to analyse the method in more depth than has been done hitherto. Finally, referring
to calculations in category (iv), it would be of interest to know how the relativistic interactions
between the colliding electron and the target could affect the cross-sections. Thus, in the e=—Ce
case mentioned above, the spin—orbit effect on the colliding electron in the p-wave channel could
well be comparable to that on the bound 6p electron.

The Breit-Pauli method has been applied widely, and with considerable success, in atomic
structure problems. However, ithas not yet been applied to the electron-atom scattering problem.
The present paper is an initial attempt to formulate a theory of electron-atom scattering in the
Breit-Pauli approximation, to understand how the various terms of the Breit-Pauli hamiltonian
manifest themselves in total collision strengths and to consider the problems mentioned in the
preceding paragraph.

2. TrE BREIT-PAULI APPROXIMATION

In the Breit-Pauli approximation, the Breit—Pauli hamiltonian Hg p.

Hyp. = Hy+o?H,, (1)
is used to describe the (N +1) electron system consisting of a N-electron ion and a colliding
electron.

In (1) H,, is the usual non-relativistic hamiltonian,
N+1 27 N+1 9
]-]nr = X (—‘VI%:—_')'F 2 —, (2)
k=1 Tk k>j Trj

H, consists of one- and two-body relativistic correction terms, and may conveniently be written:

«?H,, = D+B, (3)

61-2
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590 M.JONES
N+1 Z 1

where D =a*3 {-—%:Vz%'l"—:,“ivi (—)}, (4)
k=1 r Tk

and B =B +B". (5)

Here D consists of the one-body terms resulting from the reduction of the Dirac equation to
Pauli form, B’ consists of two-body terms which also come from the Dirac equation, whereas B”
is the Breit interaction (Bethe & Salpeter 1957, § 38) expressed in its Pauli form.

The operator B’ can be written as

N+1
B’ = kéj {gk](d) +gkj(s0)}, (6)
where auld) = 1vE (),
»
(1)

1.
8j(s0) = —oa? (F"IQ X.Pk) * S

kj
The Breit interaction B” can be written as

N+1
B" = ki*-‘lj {gkj(sol) +gkj(SS') +gkj(css’) -l-gkj(oo')}, (8)
where 8j(s0) = — 20 (%—] ka)' 85
kj
gii(ss”) = o (s:3 Si_g (e r’cir)5<sf’ "m‘)) ,
. ! )
’ 8ma?
8ui(oss') = ——5= 8178, 8%(1y),
, 062 rc.. r. oD .
grj(00") = —Z—(Pk‘P,-+—————~———” ( &y PJ)P_’)_
ki iy

In equations (2)—(9) Rydbergs are used for energies and Bohr radii for r; and ry;.

The physical significance of the operators g;; have been discussed extensively elsewhere (see,
for example, Bethe & Salpeter 1957). Ermolaev & Jones (1973) have pointed out that the matrix of
H,, should be evaluated by using perturbation theory?} in which the zero order functions are
exact non-relativistic functions. In practice, one must use the best approximate non-relativistic
wavefunctions available.

3. FORMULATION OF THE COLLISION PROBLEM
3.1. Expansion of the wavefunction
We consider an N-electron ion with nuclear charge Z and ionic charge z = Z—~ N. The ion

Hamiltonian is Hy = Hf* + a*H,,, and we formally assume that we have ion eigenfunctions

such that H;y; = E,;x;. (10)

If E, is the exact relativistic energy to order 2Ry then y, will be the exact non-relativistic wave-
function (Ermolaev & Jones 1973). In this section we will use a coupling scheme such that the y;

1 Strictly, first order perturbation theory, but in practice second order theory is frequently used. This point is
discussed further in §8.3.
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ELECTRON-ATOM SCATTERING 591

are eigenfunctions of the total angular momentum J; = S, + L; of the ion and we may therefore
ut
P Xi = X(FiSiLiJiMJi)' (11)

In the collision problem we consider a system with (N4 1) electrons. Let &, = (7,,0,) be the
space and spin co-ordinates of electron p. We put

Xi(d—ép) = Xi(xla x2> "-’xp—la xp+1: "',xN+1)' (12)

We introduce orbital functions for the colliding electron,

a1
Hz(x) = %yrm(x) ;'Fz(r), (13)
where @]m(ﬁ) = Z C/%ml—/uleflm—/t(?) 8(/“’ 0'). (14)
pm

The function é(u, o) is a spin function. The function % corresponds to the spin—orbit function
Xem (0, @) defined by Grant (1970).
The (N + 1) electron system is represented in terms of vector-coupled anti-symmetric functions:

0 = 0,(I';S, L, J; 1, j, TM)

N+1
=(N+1)% 3 ¥ (- 1)p~N+1CJ'VIIZ%JJWX(FiSiLi‘LZMJ@'Wp) 0 (L gsm| %) (15)

p=1 MJimi

The total hamiltonian is Hy p, (as defined in equation (1)). Although Hyp does not include
interactions of order a™ with m > 2, it is convenient to formally consider Hy . as the exact
hamiltonian, the eigenvalue equation being

HB.P.Wz ET, (16)

where E'is the total energy. If we assume (16) is true, then we must impose the following lineariza-
tion upon E and W, setting a? = u:

V(a) = (0) +uz P()

b

5 o (17)
HM=E®HW@EW)

=0

It should be noted that we cannot (as for the target) choose ¥ to be the exact non-relativistic
wavefunction, since it is only possible to do this for a bound state problem (to which the discussions
of Ermolaev & Jones (1973) apply). In fact, it will become apparent later that the eigenfunction
¥ must contain a contribution of order % We represent ¥ as an expansion in the functions @,

V=30, (18)

3.2. Boundary conditions

We require that ¥ must be bounded everywhere.

3.2.1. Behaviour at the origin
The functions F;(r) must be such that

lim {F(1)} = 0. (19)
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592 M. JONES

It will be shown later that by using the treatment of the Breit—Pauli hamiltonian discussed
subsequently, the functions F;(r) will behave like non-relativistic functions at the origin, i.e.

lim {r-1F,(r)} = A, (20)
r—>0

where 4, is a constant.

3.2.2. Behaviour at large radius r

At large 7, the functions F; have slightly different asymptotic behaviour from non-relativistic
wavefunctions. They satisfy

& L(l+1) 22
(- S L 2 (1 gy i ) = o, 1)
where k¥ = E—E;+ ta%2 (22)

For open channels, the energy (to order a?Ry) is positive; that is, k3 — fa2k > 0. We assume
that for open channels, the F; take R-matrix asymptotic form:

F, ~ ky¥{sing; + R;cos§;}, (23)
where ' £, =8 +T, (24)
in which g = kir—%lﬂﬂ-%ln (2k;7) +argl’(li+ 1 -—!%) (25)
and z' = z(1+a%3). (26)
The choice of 7, in (24) is essentially arbitrary. The asymptotic form (21) is valid subject to the
conditions 1okt < k2 thatis A2 < 4/a? (27)
and ArV(r)]* <1, (28)

for all 7 such that p < me (Bethe & Salpeter 1957, § 39«). Inserting the numerical value of ¢? in
(27) we obtain k2 < 75000Ry.

3.3. Coupling schemes
Inorder to relate relativistic collision cross-sections (or collision strengths) to the corresponding
non-relativistic quantities, it will be necessary to discuss the coupling schemes used for these
problems.

3.3.1. LS-coupling

(i) LS coupling structure problem: I';S; L, where I'; denotes a particular linear combination of
states denoted by C;a;S;L,. The symbol C; stands for a particular configuration and «; is a
degeneracy parameter which is used when more than one term S; L; belongs to the configura-
tion C;.

(ii) LS-coupling collision problem: I';S; L;sISL, wheres, [represent the spin and orbital angular
momenta respectively of the colliding electron, and SL refers to the total spin and orbital angular
momenta of the whole system.

LS-coupling is generally used for the non-relativistic problem.

3.2.2. Intermediate coupling collision problem A;J;slj J

This is almost the same as the representation used in § 3.1; A, labels a particular linear combina-
tion of states |C;a;S; L; J;y. At this stage we neglect coupling of states with different §;L; due to
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ELECTRON-ATOM SCATTERING 593

fine structure interactions, since such coupling is equivalent to an interaction of order a*Ry
and we wish to consider interactions of order a?Ry only. Thus, with this restriction 4; = I';S; L;,
but the effects of relaxing this restriction will be considered in § 8.

3.4, Collision strengths
We write down expressions for collision strengths in the LS-coupling and J; j coupling repre-

sentations discussed in § 3.3. The collision strengths in LS-coupling are given by

QIS Ly, IT';S3L) = 3% (28 +1) (2L +1)| T(I S, LIS Ly T'3S;L;ISL) |3, (29)
s

where the transition matrix T is given by:
T = 2iR(I—-iR)™, (30)

where I is the unit matrix. In J; j coupling (§3.3.2) Q2 is defined to be:

QIS8 LTy, TiSiLT7) = 3% (2 + 1) D TS Ly S J; T3S Ly T3y J) |2 (31)

T

and the collision cross-section is expressed in terms of the collision strength thus:

Qi) = a%g)(i, i") a3, (32)

where g, is the statistical weight of the initial level, 42 is the energy in Rydbergs of the incident
electron and a, is the Bohr radius.

4, THE VARIATIONAL PRINCIPLE
4.1. Derivation

Carse & Walker (1973) have discussed the application of the variational principle to the electron
atom scattering problem in terms of the Dirac equation. Their derivation does not take into
account the Breit or Moller interactions. We now formulate the variational principle within the
Breit-Pauli approximation, restricting the discussion in this section to potential scattering, which
illustrates most of the important features.

Consider the integral I J‘ Vi (H—E)yrdr, (33)

in which ¢ is a function of the form 6 (equation (13)) subject to the boundary conditions (20) and
(28). The behaviour of the colliding particle is described by the hamiltonian H,

Hy =~V V(r) +a2 [-}‘:1—1:1- s—1Vi— 1V2V(r)], (34)

H,,0 = E0 = [~ }a%4] 0, (35)

V(r) = Z(r)Jr (36)

and lim V(r) = z/r, (87)

r—>00

where Hy, is the Breit-Pauli hamiltonian Hy p, rewritten for the potential scattering problem.
Consider variations 81 in I due to variations 86 about the exact wavefunction 8. We assume

86 = U,,u(3) (1)r) F (r). (38)
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594 M.JONES
We consider a trial function 6t containing a radial function F* with asymptotic form:
Ft ~ k=¥{sin (£) +cos (£) RY} (39)
and satisfying (19) at the origin. It follows that
S8F(r) ~ 0, (40)
r—0
8F(r) ~ 8Rcosé. (41)
Put 0t =0+80, Rt=R+3R.
Define (0| H—E|0)t = (0| H— E|0%)
and consider 8 = (0| H-E|0)t—{0| H— E|0). (42)
We now insert (34), (13) and (38) into (42), but before doing this we note that the matrix elements
of f(mass) = — }a?V* are taken in the following way: ,
O] —1a®V4|0') = — 1 (V20|V20"). (43)

This is the standard method of evaluating these elements; it has been discussed by Lieber (1972).
The derivation now proceeds in a similar way to the non-relativistic case. We obtain:

o1 = (80] H|0)+0| H|o0)' + | P, (5F) - 5P |
where the surface term results from the use of Green’s theorem. Substituting /' and 8F from (39)

and (41) into (44) and making use of the fact that 6 satisfies (34) we obtain

+0(562), (44)

=00

8I[-R) =0
to first order in 8F, for all variations 8/ satisfying (40) and (41). Hence:
RX = Rt— (0| H— E|0)t, (45)

where RX is the Kohn-corrected R-matrix, which differs from the exact R-matrix R by terms of
order (360)2 (or 8F2). As in the usual non-relativistic derivation, the surface terms in (44) come
from the kinetic energy term in the non-relativistic hamiltonian. The relativistic operators do not
alter the form of the variational principle: the mass-variation term does not give a surface term
because of (43), whereas the other relativistic terms behave like short range potentials.

4.2. Permissable trial functions

The additional terms in the hamiltonian may make the possible trial function Ftdiffer from the
corresponding non-relativistic trial function. We consider the equation satisfied by 6 at large 7.

It follows from equation (37) that 1dav 1
—_—]s ~ =
rdr e r¥ (46)
V2V (r) ~ O.
r—>0

These terms can therefore be neglected at sufficiently large 7. Turning now to the asymptotic
behaviour of f(mass), it is convenient to write equation (35) in integral form. Multiplying
equation (35) from the left by 6 and integrating we obtain, after slight rearrangement,

f O] V2+ 2V (r) — k2] dr = }a? f [(V20)2 - k46?] dr. (47)
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Provided the conditions (27) and (28) are satisfied, the right-hand side of (47) will be small
(except near the origin), and the solution 6® of the equation

f OO[ — V2 4 2V (r) — k2] 60 dr = 0 (48)

will be a good approximation to 8. To obtain a better solution to (47), we substitute 6@ into the
right-hand side of (47), which leads to the equation:

fﬁ[ —V242V(r) -4 0dr = %oczfﬁ(”[éi V(r)k*—4V(r)?] 60 dr. (49)
Putting 6@ equal to 6 on the right-hand side we get:
fﬁ[——V2+2V(7) (14 30®k2) + V(r)2— k%] 6dr = 0. (50)
Hence using equation (13) we obtain the radial equation
[dg;—-lg—;;—ﬂ+2lf(r) (14 3a2k?) +oc2V(r)2—k2]F= 0. (51)

The solutions of this equation will not have '*+! behaviour at the origin (equation (20)), owing to
presence of the short range V(r)2 term. We neglect this term, and choose our trial functions to be
solutions of the equation:

dr2? r2

[El_z__ﬁH_ 1) +2V(r) (1 + La2k?) ——kz]F = 0. (62)

Equation (52) becomes equation (21) in the region of large r.
We note that (52) may also be derived from the second order form of the Dirac equation, which
has been given by Browne & Bauer (1966):

29, [1+vy,, I(l+1)
dr? +[Tk +2V(r) - N
. s K V'(r) 1 V"(r) 3 a2V (r)? } _

o {V(r) ry+1+a?V(r) + 2y+1+a2V(r) 4[y+1+a2V(r)]? Ge=0, (63)
where y = (1 —a2?)~% and V(r) is the same as in equations (34)~(37). The number « is related to
the orbital and total momenta / and j, according to k = — (j+1)a, wherea = + 1 whenl =57}
(see, for example, Grant 1970). If conditions (27) and (28) are satisfied then (53) reduces to:

2
%—?‘+ [kz + 1kt + 2V (r) (14 Fa?k?) —l—(l;—l) + oc2W] Y. =0, (54)

where a2 stands for the last term on the Lh.s. of equation (53). The correction to V(r) in (54) is
the same as in (52). We note that (54) contains a term }a2k* which does not appear in (52): the
reason for this lies in our choice of energy £ in equation (35). The term a2, which includes spin-
dependent effects, is generally small, but becomes significant near the origin. It is not identical
with f(so) +f(d). Thusin their normal forms, f(so) and f(d) should not be included in the equation
for the trial functions. Norcross (1973) has calculated trial functions in a potential which included
a spin—orbit term, but he included an additional correction term in the region of the origin.}

1 Itshould also be noted that if f(so) is included in equation satisfied by the trial function, one of the principal
advantages of the Breit~Pauli method is lost, namely the use of the J; j coupling of §3.3.1, rather than jj coupling.

Most target systems (even quite heavy atoms) have level structures which are described more closely by LS-
coupling than by jj coupling.

62 Vol. 277. A.
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4.3. Extension lo more than one particle

The theory developed in § 4.2 may be extended to more than one particle or more than one
channel in a way which closely parallels the non-relativistic treatment. Let ¥ be a matrix with
components ¥; which are solutions of (16). Let the radial functions F in ¥ have R-matrix
asymptotic form. We note that both F and ¥ are both matrices because there are in general N,
linearly independent solutions for each of the N, open channels; thus F;; denotes the ¢'th solution
in the channel labelled 7. Variations in the matrix

, (Y| H-E|¥) .
are considered and the proof proceeds in a similar way to that for the static potential. The Kohn
corrected R-matrix is defined by the following generalization of equation (45):
RE = Rt—(¥Y|H-E|¥P), (55)

where in the most general case H = Hy p.. A difficulty occurs in this generalization owing to the

presence of the term:
G(oo’) = Ei{gk,-(OO') +8;(00)} (56)

in H, where H = Hy p.. There is a possibility that this interaction may give rise to monopole (1/r)
terms which could lead to convergence difficulties. This point must be investigated in more
detail, since it may affect the equation satisfied by the trial functions. A full expression for the
matrix elements of the orbit-orbit interaction in an uncoupled representation is given in § 5.2.2.
It can be seen from equation (93)1 and equation (B 1) of appendix B that the matrix elements

] (ny Lm, kylymg py] 815(007) +851(00") |my Lypm” 'y Ky Lyomy i)
contain a term

= (s ') Ois o) S(m A mpym’ i) 3 (= 1) r(lym, Ly ')
x ex(limg, Lymy) AQA+ 1) [T (yi, y's") = T (v, y'd)],  (87)

TA(yi,y'i') = 2/\+1f f rydryrydry Py (ry) Fy(r2) }L/-\i—lar (P (’1))672(5;;(:2))‘ (58)

The functions P, and P, are bound radial functions, and F(r,), F;(r,) are radial functions for
the colliding electron. The integral T?(yi,y'i") defined by (58) is a direct integral, but clearly
exchange integrals of type T*(iy, y't") will occur in the matrix elements (¥'| H—E|¥) in (55).
Itis clear from an inspection of (57) thatintegrals of type 77°(iy, i"y’) can occur when |l,—1,] = 1.

Integrals of 77(¢y, i'y’) contain terms such as:

f P(l)aP rld f Fy( 2)6F(r2) dr,.

Ty

where

We note that (i) if Fy(r,) and Fy(rs) correspond to thesame energy (i.e. k? = k%) thesecond integral
in the above product will be divergent; (ii) if F;(r,) and Fy (r,) are calculated at different energies,
then the integral will be conditionally convergent. Suppose that we restrict ourselves to electron-
hydrogen scattering for the moment. Then for elastic transitions we have |l,—1,| = 0 and the
lowest order T2 integral which can occur is 7%, which leads to dipole (1/r?) terms in the free~free
integral. This presents no convergence problems. If |I, —I,| = 1, the target state has changed,

T See §5.2.2, which deals with the orbit—orbit interaction in more detail.
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and we are considering inelastic transitions (e.g. 1s-2p). The free—free integral will then be
conditionally convergent. If we consider transitions such as 2s-2p which are degenerate non-
relativistically then we can force convergence of the long-range integral by calculating F; at
energy k% and F;, at energy k2 + AE, where AE is the energy difference due to spin—orbit coupling
and quantum electrodynamic corrections (Burgess, Hummer & Tully 1970, § 2.7). Evaluation of
these conditionally convergent integrals has been considered in detail by Peach (1965). The
above arguments are easily extended to complex atoms.

We have thus shown that the orbit-orbit interaction gives no monopole (1/r) terms in elastic
channels. However, matrix elements corresponding to inelastic channels may contain such
monopole integrals, but these are conditionally convergent and may be evaluated by known
techniques. Thus, the equations satisfied by the trial function do not need to contain any terms from the
orbit-orbit interaction.

As one would expect, similar 1/7 terms can occur in inelastic channels when considering the
Breit interaction in a basis of four-component Dirac wavefunctions. The monopole terms come
from those parts of the matrix elements of the Breit Interaction connecting two large com-
ponents and two small components (D. W. Walker 1973, private communication).

The following important points should be noted:

(1) Asin the corresponding non-relativistic case, the variational procedure assumes that the
exact set of target states satisfying (10) is known. In practice approximate target states only will
be known, which will be required to satisfy

(Xilxe) = 0 and  (x;| H|xs) = E; 0y (59)

to order «*Ry in E;, the y,; being non-relativistic functions. With an infinite set of states, (59) is
equivalent to (10), but in practice it is only possible to use a finite set of target states. The
inexactness of the target states will result in first order errors in RX, in exact analogy with the non-
relativistic case. In §§5, 6 and 7 we will retain the restriction of solving (59) to order «?Ry in E;:
this means that the relativistic terms of Hy p, are only treated in first order of perturbation
theory: in this case, solution of (59) corresponds to diagonalization of the non-relativistic part of
H, and then the diagonal elements of the relativistic operators are calculated with these functions.
The effect of allowing £, to contain terms in order a* Ry and higher (i.e. intermediate coupling)
will be considered in § 8.

(ii) The trial functions differ slightly from those used in the non-relativistic case (see, for
example, Eissner & Seaton 1972). In the asymptotic region, the functions F; must satisfy
equation (21) rather than Eissner & Seaton’s equation (2.9). If distorted wave (d.w.) trial func-
tions are used, then the functions should satisfy equations of the form (52), with V a suitable
central potential. If the coupled integro-differential equations (i.d.) method is used, then thei.d.
equationsshould be modified in a similar manner, replacing the one-body operators #; of Eissner &

Seaton (1972), dz [ (l,+1) 2Z

/li = '——d-r'é“l' ) r (60)
2 J(lL.+1) 2Z 2f2
by operators k; hi = —ad;-z--l-l(%)——r‘ (1 O‘T) (61)

in the coupled equations. The d.w. and i.d. approximations are discussed in greater detail by
Eissner & Seaton.
62-2
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In concluding this section, several points should be stressed. Firstly, we have taken great care to
choose the appropriate energy (equation (22)) and the correct asymptotic forms for the colliding
electron wavefunctions. Neglect to do this will result in divergent terms which will come from
the mass-variation correction. If the mass-variation term is omitted from the hamiltonian, then
we will be able to use a non-relativistic energy and non-relativistic wavefunctions for the colliding
electron. We have demonstrated that the orbit-orbit interaction does not modify the asymptotic
form of the trial function.

Itis an unsatisfactory feature of the Breit—Pauli method for continuum states that #*cannot be
a pure non-relativistic function if the hamiltonian H contains the mass-variation term: this will
lead to errors.T However, such errors will probably be small compared with errors introduced due
to inaccuracies in the target functions y;, or as a result of deficiencies of the expansion (18) for ¥.
We also note that in practice we probably would not include the whole of Hj; . in the variational
procedure. For example, if we were studying electron spin-polarization effects, then we could
include spin—orbit interaction between the cclliding electron and the target, omitting f(mass)
and other non-fine structure terms, which have no bearing on electron spin-polarization.

5. THE EFFECT OF RELATIVISTIC INTERACTIONS UPON COLLISION STRENGTHS

It can be shown (see appendix A) that the reactance, scattering and transition matrices R,
S and T may be transformed from LS-coupling into J; j coupling by using the algebraic trans-
formation:

T8, LoJisljs TMY = [Jf]t 3 [, L] (— 1)serseen
SL

MgMy,
S, L; Jqb
) U CﬁsﬂffLﬂ'}J]FiSiLisljSLMsML% (62)
S L J

where we use the convention that [x,7,...] = [(2x+1) (294 1) ...]. We will use the following
notation in this section: Ryr is a R-matrix calculated with the use of only the non-relativistic
hamiltonian Hyr (equation (2)); R, is a R-matrix which contains relativistic corrections and the
suffices nr and rel refer to ‘non-relativistic’ and ‘relativistic’ respectively. Rewriting (55) with
H = Hy p. and making use of (1) we obtain

RS, = RE — o (| Hro | ¥). (63)

The matrix Ry will be diagonal in SLMgM;, and will be independent of Mg M;, (cf. Condon &
Shortley 1951, p. 49). On the other hand the correction a2?{¥'| Hy. |¥) will not be diagonal in
SLMyM,. Writing the R-matrix in the LS-coupling representation:

R (IS, LisISLMg My 5 I';S;Lisl'S'L' Mg M)
= R (L8, LysISLy I'yS; Lisl'SL) 6 (SLMg M ; S'L' Mg My)
— o (P (IS, LysISLMgMy) | Hee |W(I'3S5Lisl'S'L' Mg M), (64)

where here and subsequently we omit the superscript K. We now consider the effect of different
types of terms in Hye.

1 Bethe & Salpeter (1957, § 39) give reasons for using non-relativistic wavefunctions with the Breit-Pauli
hamiltonian.
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5.1. Effect of fine structure interactions

The fine structure (f:s.) interactions consist of the spin—orbit interaction f;(so), the mutual
spin—orbit interaction g;;(so), the spin-other-orbit interaction g;;(so") and the spin-spin inter-
action g;;(ss"). We will not consider the spin—spin contact interaction g,;(css’) as a fine structure
interaction since it is a scalar force (de-Shalit & Talmi 1963, p. 174), and thus commutes with
both § and L. The interactions f,(so), g;;(so) and g;;(so’) are vector interactions (de-Shalit &
Talmi (1963), p. 204, give the most general form of a vector interaction, of which spin-orbit type
interactions are special cases). In the case of the spin-spin interaction, Innes (1953) has shown that

it may be written thus:
Gri(ss’) = —6 % (—1)#{S8)S;}3{RR} , (65)

where { }} stands for the component x of a spherical tensor of degree 2. The tensor {RR}? , will not
be defined here (Jones (1971 @) has defined R in a form consistent with the units used in this paper).
The spin—spin interaction is thus a tensor interaction (de-Shalit & Talmi 1963, p. 144). The fs.
interactions can thus all be expressed as a product of tensors of degree £:

a?Ty(k) = a?R,- S, 66
0

b ¢ {1 for spin—orbit, mutual spin-orbit and spin—other-orbit interactions,
where =

2 for the spin—spin interaction,

R, is an orbital angular momentum operator and ), is a spin angular momentum operator.
Clearly, there can be no two-particle f.s. interactions with £ > 2, since one cannot construct
a tensor of higher degree than two from the spin operators of two particles. Thus any discussion of
the scattering problem based upon the interaction 7j(k) will apply to any fine structure inter-
action obtained from any order of quantum electrodynamics. We therefore consider an inter-
action of type 7y(k), putting H,, = T;(k) in (64). Using the transformation (62) we obtain

Rea (IS Ly Jysl JM; TS Ly T sUj" TM)

S Li J;
=[J, I j1F S IS8, LLYELs 1 J Y [Rae(LpS; LysISL; TS, L} sl'SL)
SL,S'L’ S L J
x O(SLM,My; S'L'MgMyp) —a® % Cif sty 5 Carg iy ir
MsMy,
MMy
Sy Lp J
x('.P(FiSiLislSLMSMLHRk-Skl‘P(F;S;Lgsl’S’L’MS'Mj;))]{s ! j'}], (67)
S L' J

where we have eliminated the summation over azimuthal quantum numbers in the first part of
this expression by means of the orthogonality property of the Clebsch—Gordon coefficients. We
recognize that the second part of (67) contains a quantity:

— o WP(I;S; LisISLIM)| Ry S, |W(I';S; Lisl'S'L' M),
which may be written immediately as

—ar(= s [ f ) NS LTS, S| S, TS8P L] | R TYLIL'y
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(Brink & Satchler 1968, appendix VI). Hence equation (67) now becomes
Ry (TS, Ly Jyslf M TS, L T sl'j’ TM)

S L
[T Toid B S S,L8, L s 1V [Rue(TLS,L, S TS, LLsISE)
SL,S'L’ S L J
'y ’ ! ’ S S’ k
x DSLM My S'L'MgM;) —aa(— )S+ [8, L2 J}
Si I T
« RME (I8, L,ISL; l’gSgL;l’S’L’)]{s v J} (68)
S L
wheret
RME (I8, L, ISL, T4, LUS'LY) = (I38;58] S, | 18158"y (IUL L) Ry | THLA L
— (TS, L,sISL| Ry S, | IS1LisVS' LY. (69)

We will first consider the case when all R;; are small, when we can approximate:

T = — 2R, (70)

It will be shown later that the results of this section will be valid even when this restriction is
relaxed. With (70) we have:

QIS LyJy, TiSiLiJ7) = § 3 4(2J + 1) RIS, Ly J; TS Lil'y' J) | (71)
wis’
J

and substituting (68) in (71) we obtain:
QNS L Jy TS Ly J)

[ A 2]

=} 3 42T+ 1) [Rur(TyS, L J sl T TSIl ) 2

wij’
J

— 302 3 [, J, Tl 5 A[S, LS, L8, LY, 8", L]}
i’ SLS’L’

SIS L"

S L J (S5 L TN (S L Gy (Si Li
S L J)\S8 L o Jhw LoJgywr L J

x {B(SLMSML, S'L' M M) [S", L1 Rue(I; S, LysISL; T3S, L sI'S"L)

LSSk
wyn promymy [ _ A\S"+L"+J
<RME(S'L', f18°L) (— 1y (7, )
("L ME MY, SPLYMEMY) S, LT Rua(IyS; LysIS"LY; 'S Lisl! S"L")
S Sk
PQITIN (1 \SHL AT
« RME(BSL, f'S'L’) ( — 1)S+14 {L, i J;
(S, L, ", L"Js RME(BSL; f'S'L’) RME(8S"L"; f'S"L")
By
where B=1I,8Lsl and p' =I;S;L;sl’

T We use a quasi-FORTRAN notation for the reduced matrix element RME.
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and R, (138 L, JyslyJ s 'y S Ly J ;sl’j” J) is obtained from Ry (17 S; L;sISL; I';.S; L sISL) by means
of the usual algebraic transformation of LS-coupling R-matrices to J;j coupling (equation (A 9)
of appendix 4).
It can now be seen that (72) has the form:
QLS Ly Jys TS Ly Jp) = QLS Ly I3 TS L J5) + e C(Iy 8, Ly Jys T3S L3 J7)

+atCRl( S Ly Jgs T3S LiJ7),  (73)

where C2) and C4 are the coeflicients of ? and a respectively in equation (72). It would be
consistent to neglect the terms in order a?, since Hy p_ contains no terms of higher order than
a?Ry; clearly terms in order *Ry in the hamiltonian would contribute to C%4}. This comment also
applied to calculations based upon the Dirac equation, where again the hamiltonian contains no
terms of higher order than «?Ry. In the Dirac equation formalism it is difficult to separate out the
a? contribution to the R-matrix, making it difficult to omit the contribution C). It would be
easier, but still somewhat inconvenient to omit this contribution in a Breit—Pauli calculation. The
possible effects of this * contribution will be investigated in § 7.

It is impossible to simplify (72) any further without carrying out summations over J; and J;
(i.e. over the target levels). If we do this, we can make use of the orthogonality properties of the
9j symbols (Brink & Satchler 1968, appendix I1I) to obtain:

B DS Lidi; TS L Jy)
PIR)

= (IS Ly 'S L) —3a2 Y X 4(20+1) {28(SLMSML, S'L'MgM;y)

SLS'L’ 35'1
J

X (—1)S+LHI[S, L]%{LS, i ﬁ}Rnr(ﬁSL; B'S'L"YRME(BSL; p'S'L’)
—a?[S, L] § 8 R |[RME(BSL; 5'S'L’)|? (74)
b Ll L J 3 .
The 6j symbols satisfy the sum rule:
(=g (] § Ih =g (75)
g 4

Using (75) and also the 6j-symbol orthogonality relations, we obtain:
S Qe (TS, L, Jy; TLSiLLTY) |

e i A 2]
= OIS, L T35 L) — 308(k, 0) S, 8[S, L] Rux(ASL; #'SL) RME(BSL; §SL)
+iat Y 4[S, L]D%]— IRME(SSL; p'S'L'|?. (76)
Jin
SLS’'L’

A similar proof applies when we use a unitarized 7T-matrix (30) rather than the non-unitarized
T-matrix (70). The proofis accomplished more elegantly if we define T in terms of the scattering
matrix §: T—I—§. (77)
The wavefunction of the colliding electron must have S-matrix asymptotic form, in which case
the principle still takes the form (55), but with $% and S* replacing R¥ and Rt respectively. For
inelastic scattering we have Tyl =802 (i +)). (78)
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Similar arguments to those which lead to (76) give us

J.EJ,.“Qrel(FiSiL" Jy; T}SLLLTY)

= (L8, Ly TS;Ly) — 5020 (k, 0) X 2[S, L1 Re [$n(BSL; f'SL) RME(BSL; 'SL)]
g

+iat X [S,L]D%]—|RME(/3SL;/3”S’L’)|2. (79)

gju
SLS'L
If we consider elastic scattering we obtain

X QNS L Jys 1S Ly J;)
Ji, Ji

= Qv (1,8, L,; TS, L) — 1a28(k, 0) Y 2[S, L] Re[RME(ASL; ASL)
JISL
+8X(BSL; ASL) RME(BSL; BSL)] + tat 3 [S, L][—I%IRME(/BSL; BSL)|%.  (80)
JISL

Wehave proved that, fo order o2, thef.s. interactions of order «2Ry make no contributions to elastic
or inelastic collision strengths which have been summed over the fine structure levels of the initial
and final target terms. However, the collision strengths will also contain termsin a4, which appear
as a consequence of the f.s. interaction of order «*Ry. These terms do nof vanish when a sum over
the target fine structure is made. The proof will also apply to f.s. interactions of any order
a™Ry (m > 2). Examples of such higher order fs. interactions may be found among the quantum
electrodynamic corrections of order «®Ry (Ermolaev 1973) and the corrections of order
a*Ry (Daley, Douglas, Hambro & Kroll 1972).

The above theorem will not apply to differential cross-sections and electron-spin polarizations,
which willin general contain non-vanishing contributions oforder o2 The calculations of Burke &
Mitchell (1974) do not take account of relativistic effects involving the colliding electron. It
follows from the above theorem that their calculations of elastic cross-sections will be correct to
order o?. However, their results for differential cross-sections and spin-polarizations may be in
error due to their omission of spin—orbit interactions of the colliding electron in the field of the
target.

As one would expect, the effect of f.s. interactions does not necessarily vanish to order a? when
one considers collision strengths between fine structure levels. Two effects come in here:

(i) Spin-orbit, spin-spin, etc., interactions of the colliding electron with the target, i.e.
phenomena which directly involve the colliding electron.

(ii) Mixing of target terms due to breakdown of LS-coupling. Saraph (1972) refers to this as
‘term-coupling’, an expression which we will adoptin this paper. Term-coupling will be discussed
in § 8, but it suffices to note here that this type of effect does not vanish when one sums over the
target f.s. levels.

5.2. Effect of other interactions

The interactions f;,(d), f(mass), gz;(d), gr;(css’) and g;;(00’) can all be evaluated in LS-
coupling. The interaction f;,(d) makes no contribution to inelastic collision strengths, since it is a
one-body interaction. For a similar reason, f;(mass) makes no direct contribution to inelastic
collision strengths, but there will be a small indirect contribution, since f; (mass) modifies slightly
the asymptotic form of the colliding electron wavefunction (see equations (21) and (52)).

Of'the remaining two-body interactions we note that g;;(d) comes directly from reduction of the
Dirac equation to Pauli form, whereas g;(css’) and g;;(00’) both come from the Breit interaction.
In order to gain some insight into the relativistic effects on inelastic collision cross-sections, we
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consider the effect of including g;;(d) only in the hamiltonian. We note that this will allow us to
compare the predictions of our theory with the calculated results of Walker (1974) since Walker
uses the Dirac equation only. He thus effectively includes g;;(so) and gg;(d) in his calculations.
However, according to the results of § 5.1, the effects of mutual spin orbit interaction gi;(so) can
be eliminated by summing over the target fine structure, thus leaving g;;(d) as the only
contributor.

With only g;;(d) (and/or g;;(css”) and gy;(00")) included in the hamiltonian, we can solve the
whole problem in LS-coupling, without any need to carry out transformations of the type (62).
We will use similar notation to that of Eissner & Seaton (1972).

5.2.1. Two-body Darwin term

Firstly we write down the matrix elements of g;;(d) between uncoupled wavefunctions, each
consisting of a product of a bound state wavefunction:

I, Ly = (0, Ly | 8) = By + Poy (1) 81, 0) (1)
with a continuum wavefunction 6,(%) of the same form:

kilegtemy = 0l mi| 8) = Yy (DB 8y 0). (s2)
The matrix element has been given by Jones (1971 5)

(i by pmy Kyl prymy| g10(a) |my, b '’ Kyl poyrmy)
= B3 ) s 1) 3 ) 33 (= )7 6l ) e )

< [ X, F B, P, (53)
where e(lm)l'm') = [l[/l\]]f rC bt s
o (54)
and X,(F,FyP,P,) = f S E() Fulr) Py(r) By (r) b
0

The algebraic coeflicient involved in (83) differs by a factor of (24 + 1) from that involved in the
Coulomb interaction. Hence one may take into account the two-body Darwin term by adding to
each two-body Coulomb radial integral a correction:

—a2(2A+ 1) X,(F,F, P, P,).

We may now write down the matrix element {¥| H— E |¥) with the help of theory developed
elsewhere (see, for example, Eissner & Seaton 1972), where ¥ now represents the wavefunction
of the whole system in LS coupling. The function ¥ is defined by (18) with ©; now defined by:

0, = OIS, Ll SLMM;)
= (N+ 1)-% Z (—1)p-N+ Cﬁé,iﬁg CMLZszLXi(Fz'SiLiI’?p) 0 (U poyms) Xp). (85)

1 In the calculations of Walker (1974), all three one-body terms fi(mass), f3,(d) and f;(so) are automatically
included in the hamiltonian when calculating the wavefunctions. He expresses his cross-sections in terms of
R-matrix elements whose phase are referred to those of his Coulomb-Dirac trial functions. Thus to first order,
Walker subtracts out the effects of f;,(mass), f,(d) and f;(so), but in his formulation, they will make second and
higher order contributions to (¥'| H—E|¥).

63 Vol. 277. A.
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In general the antisymmetrized target functions y; are constructed from the bound state orbitals
of (81). The matrix element of the hamiltonian is given by:

HH-E¥) = % (F] (b= k) 0+ Wi | ), (86)

where 4, is defined by equation (60)} and
[ B Fedr = 2 YRR, F, B - RAED, Py F) (57
where R\(P,F;, P, F;) = Ry(P,Fy, P, Fy) — o220+ 1) X,(F, Fy P, Py) (88)
with Ry(P,F,, P, Fy) = f 0°° Fyya(B,B,|r) Fydr. (89)

The y, function of equation (89) is defined by:
yr(4B|r) = r"“lj‘w A(x) B(x) x* dx +r’*J‘oo A(x) B(x) x*1dx. (90)
0 0

The coefficients £ and g%} are algebraic. The index v merely labels the algebraic coefficients
Jfiw and gy for a pair of channels (z,2'), and the sum over » in (87) contains a finite number of
terms. The quantities A, y and ¥’ in (87) depend upon ¢, " and v.

We have shown that one may take into account the two-body Darwin term by adding a
correction to the radial integrals which appear in the usual set of coupled integro-differential
equations obtained in the non-relativistic case. For 1s-2s (or in general 1s-zs) transitions in
electron-hydrogen-like inelastic scattering, the approximation thus obtained will be equivalent
to that of Walker (1974). The reason for this is that Walker omits the Breit interaction from his
calculations, and thus his Dirac calculations only account for the Darwin two-body and mutual
spin—orbit terms. The latter vanishes to order a? in the case 1s—2s (this follows from §5.1),
leaving only the two-body Darwin term. For 1s-2p excitations in the same system, the theory
described here will give collision strengths £2(1s—2p) which are equivalent to the sum of Walker’s
results for 2(1s—2p;) and £2(1s-2py).

5.2.2. Spin—spin contact and orbit—orbit terms

It may be shown that the matrix element of — (87/3) ;.- 5,03(r);) is equal to that of 2md3(r)
provided that the wavefunction is antisymmetric with respect to the interchange of the kth and
Ith electrons (de-Shalit & Talmi 1963, p. 218). The wavefunctions ¥ and @, used here are anti-
symmetric with respect to interchange of any of the N + 1 electrons. Hence in our problem we may

gu(css’) = —2gy(d). (91)

The arguments of the previous section now apply, so it follows that we may include the spin-spin
contact interaction in our calculations by adding to each two-body Coulomb radial integral
a correction:

write

+202(21 + 1) X,(F,F, P, P,).

This corresponds to a result derived by Feneuille (1968) for the atomic structure problem.
If we include both two-body Darwin and spin—spin contact terms in H, then the matrix
elements of H — E will be given by equations (86), (87), (89) and (90) but with R, replaced by R,

T For convenience we have omitted f; (mass) ; at this stage we study the effect of the two-body Darwin term only.
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where R\(B,F,, P, Fy) = Ry(P,Fyy PyFy) +a2(2A+ 1) Xy(F,F P, P,)
= EA(P'yFi’ Py’Ei') + 2“2(2’\ + 1) Xz(EFi'PVP'y')' (92)

Thus addition of the spin—spin contact term (which comes from the Breit hamiltonian, not from
the Dirac equation, that is, B” rather that B’ (equation (5)) could have a large effect upon the
relativistic corrections. The results of Walker (1974) for quantities such as 2(1s3~2s;) could be
substantially altered if the Breit interaction were to be included in the hamiltonian which he used.

Inclusion of the orbit—orbit interaction in H is more difficult. Once again, we find that part of
g12(00") may be written in a similar form to the Coulomb interaction, but with a different radial
part (Eissner, Jones & Nussbaumer 1974). The matrix elements of g;5,(00’) in an uncoupled
representation are given by

<”ylyﬂm, kil pym;| 815(00") + g1 (00") l”y’ l'y' p'm'y ki ly o my)
= 00 1) 8y pir) O(m -y m” +myr) 35 (— 1ym=mi'gy (L, m, Ly m") ex(lymy, Lymy) Zy (P, Fyy Py Fry)
YL
(A+1)(A+2)
x{(l,+L+2A+2) (I =L +A+1) (L, =Ly +A+1) (L+1,—A) (L +1+A+2)
X (Lp—=LAA+1) (—lp+ A+ 1) (I +1— )}
x {NA(P,F,, P, Fy) + N\(F,P,, F;P,)}, (93)

v

—2 S (= )i dy (L my Lom') dy(lymy, bm
A=0

where Z, consists of a linear combination of various types of integrals, and the quantities N3
are the usual magnetic integrals. The quantities Z, and N* are defined in appendix B. The
coefficients d, resemble the ¢, coefficients, and are defined by:

dy(m, I'm") = {[1, '} G55 Cl i o (94)

The first term of (93) has the same angular part as the Coulomb interaction, and thus one can
take account of this part by adding a correction Z, to the radial integrals R, or R,. The algebraic
factor in the second term of (93) is different from that in the Coulomb interaction, and the
algebra of this term must be evaluated separately. Thus W; must be redefined:

[ W Pedr = 2 SRR, F B - 2Ry, B E)
0 v

+2 5{f{(00") NN(B, F, Py Fy) —gi(00") NNF; Py, P, Fy)},  (95)
where f{7/(00’) and g#(oo’) are algebraic coefficients for the non-Coulombic part of g;,(00’).
They are analogous to the coeflicients £ and g{%} and may be calculated in a similar way. The

radial integrals R§ contain corrections from the interactions gy;(d), gi;(css’) and g;(00”), and
they are defined by

(B, F,, Py Fy) = Ry(P,Fy Py Fy) +02(2A + 1) Xy(F,Fy P, Py) +[1—3(X, 0)1Z,(P, F, B, Fy). (96)

In (96) it should be remembered that Z,(P, F;, P, F;;) has a factor «? absorbed within it, so that
both corrections to R, are of order a*Ry.

63-2
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6. SCALING PROPERTIES OF COLLISION STRENGTHS
6.1. Derivation of scalihg properties
It may be shown (see, for example, Burgess ¢ al. 1970) that non-relativistic collision strengths
have the following asymptotic behaviour along the target isoelectronic sequence

Q ~ const/Z? (97)

Z—>0
where for each Z, 2 is calculated for the same reduced energy K2 of the colliding electron
K2 = k2|72, (98)

k2 being the energy of the incident electron in Rydbergs, referred to the target ground state
energy. In this section, we examine how relativistic effects can modify the asymptotic behaviour
(97). To do this, we change the radial variable from 7 to p = Zr for the target radial wave-
functions, and define reduced target radial functions

Prulp) = Z5Fy(r). (99)
For the colliding electron we change the radial variable from r to § = z7, and define a reduced free
wavefunction to be

F,(8) = z2F(r). (100)
For inelastic transitions, the R-matrix will scale in the same way as {¥'| H— E |¥). For simplicity
we will only include g,;(d) in H, but the form of the expansions obtained will be the same when

other interactions from the Breit—Pauli hamiltonian are included.
Substituting (99) and (100) into (87) and using scaled radial variables we obtain
Z2 2

(04
82,70 Py )|

Z
F\ W |7) = 25| 10| 52, 7 2, Fi) -
Z

7 242
-2, 7, 2,7)-EL a2, 7 2, 7). (o)
In equation (101), the scripted integrals #¢ and Z¢ are the reduced forms of R, and X,. The
superscript indicates that the integration is carried out with respect to p. Hence using (86)
and (101) in (55) we obtain

2.2
Ry = 'ZZ—zd'n +gziﬂw (102)

where Mii’ = 22[.][1,(:)‘%‘;('@7%: ‘@y"%') __g‘(:;),,%ﬁ(gﬁ ‘@ya ‘@y’g;@")],

(103)
By = =23 [+ X8(P, F, P, Fr).

In (102) £, is a scaled reactance matrix element. It follows that if we insert Z-matrix elements
of form (102) into the expression (29) for 2, first using approximation (70) we obtain

Q ~ A|Z*+a2B+a2Z°C (104)
large Z
or Z22Q ~ A+ a?Z2B +aZAC. (105)

Expressions (104) or (105) hold subject to
arZ% < 1, (106)


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRON-ATOM SCATTERING 607

which is the condition for the validity of the Breit—Pauli method (see § 3.2). The expansions are
thus approximately valid in a region of large Z, rather than in the Z = co limit as in the non-
relativistic case.

The result (105) is quite general; it can be verified that all terms of the Breit—Pauli hamiltonian
will give contributions to scaled inelastic collision strengths which are of the form «2Z2B + a4Z*C.
This can be done by examining the scaling properties of the various radial integrals arising
in the matrix elements of Hg p..

6.2. Discussion

The following comments may be made in the light of the asymptotic expansion (105):

(i) In §5.1 we pointed out that it is inconsistent on theoretical grounds to retain the term in
ot arising from fis. interactions between colliding electron and target. Furthermore, there is
no semi-empirical evidence for retaining this term. However, one can justify the retention of
ot terms arising in intermediate-coupling calculations of collision strengths. T

(ii) It was noted that in §5.2.2 that results obtained with the two-body Darwin term only in
the hamiltonian may differ considerably from results calculated taking into account both the
two-body Darwin term and the spin—spin contact interaction. It can now be seen that the effect
of including the extra interaction g;;(css’) will be to change the sign of the term in a2 of equation
(105).

(iii) Itisreasonable to assume that 4, Band Care all of the same order of magnitude, since they
are all functions of radial integrals 2,, Z,, etc.} For ahydrogenic ion with Z = 25 (Mn xxv) it then
followsthatthetermsin «2Z2and *Z*will make contributions of about 39, and 0.1 9, respectively.
Walker’s calculations for Mn xxv give total corrections of about 3 9, for the 1s-2s and 1s—2p
transitions, and about 5 9, for 2s-2p, at a reduced energy of K2 = 1. Walker finds slightly larger
(~ 109,) corrections for elastic transitions. '

7. EFFECT OF BREAKDOWN OF LS-COUPLING IN THE TARGET

We discuss here the method used by Saraph (1972) in which fine structure collision strengths are
obtained from LS-coupled R-matrices. Flower & Pineau des Foréts (1973) and Mason (1974) have
used the method in calculating collision strengths for certain high ionization stages of Fe, where
LS-coupling breaks down appreciably. The aim of this section is to:

(1) list all necessary formulae;

(2) state precautions which should be taken in such calculations;

(3) look at contributions of order a2 and a* to both R-matrices and collision strengths;

(4) examine the dependence of the fine structure collision strengths upon Z or z, and to find
the analogue of expansion (105).

In connexion with point (3) we will justify the retention of the «* contribution for LS-coupling
breakdown effects.

7.1. Formulae

We assume that we have a set of LS-coupling R-matrix elements:
R(IyS,LISL; I'; S Ly I'SL)

1 See also the comments in §8.3.2.

1 Magnetic and similar integrals occurring in the Breit-Pauli method commonly have the factor a2 absorbed
into them. We do not do this here, so one would expect all integrals %,, Z,, 42, etc., to be of the same order
of magnitude for given A (A2 is a scaled magnetic integral NA).
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These R-matrices are then transformed into J, j coupling by means of the algebraic trans-
formation:
RIS, Lyl T THSi LT3l
' Si Ly J; Si Ly Ji
= [, J'J Jilt 2 S, L] {% ! J'}R(FiSiLJSL; T3S L I'SL) {% l j}‘ (107)
S L S L J S L J

A further transformation is now made to intermediate coupling
R(A Y T; i Jil5'T) = % fo(Ay TySiLe) R(TS; Ly Jilj I, T3S Ll T) [ (A3 T38: L),

Ir;S;Ly
TiSiL
(108)
where f Ji(A'eb IS, L) = X aSiti(I, Cay) b74(4;, oy Sy Ly). (109)

05&2;
In (109) the coefficients ¢5i% and 47¢ are expansion coefficients of the configuration-mixing
wavefunctions and the intermediate-coupling wavefunctions respectively, 1.e.

|38, Ly = X aSTi(Ty, Cyoy) |Gy S, Ly, (110)
Ciag
and 4,0y = % b4, S, L) |CoyS Ly J ). (111)
Cia; Si Ly

In expansions (109) and (110) and (111) it is understood that the coefficients aSi%, 57i and f,
all refer to wavefunctions of the same parity. Expressions (107), (108) and (109) are derived in
Appendix A.

It should be noted that in general the f;, coefficients are not the same as the set of mixing
coeflicients obtained when the Breit—-Pauli hamiltonian matrix of the target is diagonalized.
However, in the special case of single configuration calculations it follows from (109) that

J7, (45, T35, L) = 87i(4,, Cy 08, Ly), (112)

where I'; = C;o; in absence of configuration mixing. Calculation of the f;, involves three steps:

(i) Calculation of the configuration mixing coefficients aS%(I’;, C;a;) by diagonalizing the
submatrices of S; L; and parity of the target hamiltonian.

(ii) Calculation of the coefficients 47i(4,, C;&;S; L;) by diagonalizing the target energy sub-
matrices belonging to the same J; and parity with some or all of the f.s. interactions of the
Breit—Pauli hamiltonian included in the calculation of the energy submatrices.

(iii) Substitution in (109) to obtain f7,.

7.2. Consistency of phases

The derivation of expressions (111), (112) and (113) implicitly assumes that the representation
T, used in the calculation of the R-matrices should be consistent with the representations 4; and
I'; used in the calculation of the f;.. This means that the calculations of the collision problem, the
LS-coupling target problem and the intermediate-coupling target problem should be based upon
the same non-relativistic target functions. Thus, the same algebraic methods should be used to calculate
the R-, aSili- and b7+-matrices. If, for example the Slater determinant expansion method discussed
in §8.2.2 is employed, precautions should be taken to ensure that the same Slater determinant
expansions of the target states are used in the calculation of R, e and b matrices. It also follows that
mixing of different algebraic methods may give unreliable results; for example, the use of
fractional percentage techniques in the calculation of R, but the use of Slater determinant
expansion techniques in calculating the f, (or the aSiZi and 47%).
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A program package satisfying these phase consistency requirements is now available at
University College London (Eissner 1972). A program written by Eissner may be used to produce
R-matrices in the distorted wave approximation. The program of Jones (1970, 19714, b,
Eissner ef al. 1974) 1 produces f;, coefficients consistent with R-matrices from Eissner’s program.

7.8. Dependence of transformed R-matrices and fine structure collision strengths upon a® and Z

7.3.1. Dependence upon o®

In order to avoid unnecessary complication we will examine this problem for the special case
of collisional excitations among the 1s21S and 1s2p- 3P states of a helium-like target. The results
obtained will display all principal features of the problem.

Consider first the excitation 1s21S,— 1s2p 3P,. We will represent initial and final states by one
configuration only.} In intermediate coupling, the 28P; and 2P, levels mix (the ‘singlet-triplet
mixing’ of Ermolaev & Jones (1972)) and we may write

Y(4 =1,2°P) = b(1,1) $(2°P) +5(1,2) $(2'Py),
Y4 =2,2'P) = b(2,1) $(2°P1) +6(2, 2) ¢(21P1),}

where b = b(4,1), and ¢ = 1 for 23P;, ¢ = 2 for 2P, and 4 = 1, 2 correspond to the labels on the
intermediate coupling eigenfunctions y. The label 4 = 1 represents the eigenfunction ¥ corre-

(113)

sponding to the lowest eigenvalue in this case. The ¥ are linear combinations of orthornormal
non-relativistic wavefunctions ¢(°*P;) and ¢(*P;). We omit J; in the labelling of the 4’s, since only
the J = 1 states couple; the matrices of b for J/ = 0 and J = 2 consists of single unit elements.
Owing to our neglect of configuration mixing, the f;, and 47i coefficients will be equal (i.e.
equation (112) applies). For the purposes of this discussion it will be clearer if we denote inter-
mediate-coupling and LS-coupling R-matrices by RI¢ and RES respectively. A similar convention
will be adopted for collision strengths. It then follows from (108) that

RIC(118,iTM; 23P,1'j' T M)
— (1, 1) RES(118, [iTM; 25P, I'j'TM) + b(1, 2) RES(11S,[jJM; 2P, ' TM). (114)

Obviously, if both initial and final states were affected by intermediate coupling, additional terms
quadratic in the 4’s would appear.

The a2-dependence of R can now be obtained by means of perturbation theory for the
coefficients . The matrix of 4(7,5) is normally calculated by diagonalizing the energy matrix
including fine structure interactions. Ermolaev & Jones (1972) have pointed out that this is
approximately equivalent to the application of second order perturbation theory: thus the shift
(1) of the energy of the target level 1 due to the perturbation a?H,,4 is given by

<1| ert|n><n| er |1>
Epert(l) = “2<1|Hpert|1>+a’4an§*l £ El"En pert .

pert

(115)

With the restriction that the summation over states n is restricted to include only those states
resulting from the set of configurations included in the calculation. In our example of the helium-
like 2 3P, state, this means that only the nearest state whichis 21P, (i.e.n = 2) isincluded. Second

t This program will shortly be published in Computer Physics Communications as part of a joint publication with
Dr W. Eissner, Dr H. Nussbaumer and Dr P. J. Storey.
1 This is a good approximation for highly ionized members of this sequence; see Ermolaev, Jones & Phillips
(1972), who compare their elaborate calculations of energies with energies calculated from the simple Z-expansions
of Doyle (1969), for selected ions in a wide range of Z.
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order perturbation theory will be a good approximation to the diagonalization procedure
provided that Hiy = (1| Hyert |y < (B~ Ey) (116)
for all the states 7 included in the approximation. Now the second order energy can be obtained

from the first order perturbed wavefunction. Hence if the condition (116) holds, the eigenvectors
of the hamiltonian matrix for J = 1 will correspond to the first order perturbed wavefunctions.

P4 =1,2°P)) = ¢(2°P, )+oc2EH 7 $(2'Py),
2 (117)
P4 =2,2'P) = (27Py) - ¢(2 *P,),

where the functions ¢ are non-relativistic basis functions which are orthonormal. In (117) the
functions ¢ are not normalized to unity, but they may be normalized by multiplying the

equations (117) by a factor. H.. \2)-}

, C= {1+a4(——-11—) } . (118)
17 2

' H,
Thus V(A = 1,2°B) = C 927 +or gt gl21py) |, (119)
with a similar expression for ¥ (4 = 2,21P;). We may now write down explicit expressions for

the b-coefficients: b(1,1) = C; 5(2,2) =C
H, H, (120)

9 . — 2 12
6(1,2) = Ca z —E’ b(2,1) = —Ca T

Substituting expression (120) in (114) we obtain:
RC(11S,[jJM; 23P, I'j'TM)
= CRES(11S,[jJM; 23P I/ 'JM)+COL2 Fy E RES(1YS,[jJM; 2P, I'j'TM). (121)
E, —

For convenience we now use approximation (70) for the 7-matrix, obtaining the collision
strength from (71). (Use of approximation (70) does not affect the generality of the results:
the transformation (108) also applies to the S-matrix —the transformed S-matrix could then be
substituted in the more general expression (77) to yield the 7-matrix.) We obtain:

QIC(118; 23P,) = Cz{QLS(IISO; 23P,) + ot (E—ffj) 0QIS(118,; 21P))

oH,
tor2te pejag sp ap } 122
E,_F, (11845 3P, 1Py);,  (122)

where D is a cross term defined by

D(1Sy; 3Py, 1Py) = Z 4[J] RES(11So[jTM; 23P, I'j' M) RES (118, [jT M ; 2P, I'j' JM). (123)

Eliminating C? from (122) with the help of (118) we obtain
Q191185 29P;) = QES(115,; 2°P,)

H? ‘
+“4(-———El_12 52)2{9“(1 1S¢; 218) — F5(118,; 2°P,)}
2~ la 1
+opthe 77, D80 Py "P1) + (o). (124)
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Two important points now arise:

(1) Is it valid to retain the term in a4, since the target hamiltonian does not contain any
interactions of this order?

(ii) How do phase inconsistencies of the type discussed in § 7.2 affect £7°?

With reference to point (i) we note that there is a large body of semi-empirical evidence to
support the retention of the a# term in £2C. Recently Ermolaev & Jones (1972) carried out astudy
of the fine structure of 1szp state in ions of the helium iso-electronic sequence. They concluded,
after comparing the results of their calculations of f.s. splittings in 1s2p states with the quite
accurate experimental values, that the singlet—triplet correction seems to account for the major
part of the a4 Ry correction to the f.s. energies. It would appear that, in this case at any rate, all
other corrections of order «*Ry which Daley et al. (1972) considered give only a small contribution
to the f.s. separations. Further semi-empirical justification for the use of second order treatments
of the Breit—Pauli hamiltonian can be found in studies of other systems. For example Condon &
Shortley use ‘second order spin—orbit interaction’ to obtain the correct transition from LS-
coupling to jj-coupling expected from experiment. Jones (19714) explained the inversion of
certain fis. levels in Fevi by means of a second order treatment of spin—orbit interaction;
Nussbaumer (1974) has found similar effects in Fe xm1. Thus there is fairly strong support for the
use of second order perturbation theory in calculating breakdown in LS-coupling for the target
problem. Validity of second order perturbation theory for the energy implies the validity of using
first order perturbed wavefunctions, such as those of (117) or (119). Consequently, ifit is valid to
use such a wavefunction for the calculation of a R-matrix, one must retain all terms arising from it,
including the term in . together with the higher order terms O(«®) which arise from the normali-
zation. This state of affairs should be contrasted with that relating to the calculation of relativistic
effects explicitly involving the colliding electron (§6.2).

Turning to point (ii), it suffices to note that changes of phase in the calculation of the algebra
of the target can resultin phase changes in the off-diagonal matrix element /;, or the cross term D.
It is therefore essential that both H,, and D are calculated from the same target vector coupling
coeflicients to avoid errors in the &? term of equation (124). The terms in a2 and a* of (124)
are likely to be of the same order of magnitude. In cases of interest, these two terms may dominate
QIC, Thus any change in the relative sign of these two terms could alter the collision strength by
a considerable amount.

Two further points should be noted: firstly, if we use the mixing coefficients to estimate 1€
from the relation

Q101185 29P,) ~ b(1, 1)2Q5S(11,; 29P,) +6(1,2)2Q55(118; 21Py),  (125)

then it will only give a very rough estimate of the change in collision strength due to intermediate
coupling, since it neglects the cross-term in «?, This cross-term is likely to be significant when
intermediate coupling effects are important. Secondly, by contrast with the effects discussed in
§ 5.1, term-coupling can effect collision strengths (to order a? and higher) even when the collision
strengths are summed over the fine structure of the initial and final states.

7.3.2. Dependence upon Z

The dependence of £ upon Z may be obtained by examining the Z-dependence of the
various terms on the right-hand side of (124). For this, we need to know the Z-dependence of
QLS D, Hy, and E, — E,. We note that 228 has the asymptotic behaviour (97). It may be easily

64 Vol. 277. A,
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verified that the term D (equation (124)) has the same asymptotic behaviour. In order to account
for intermediate coupling effects, the matrix elements /;, must include at least spin—orbit inter-
action. It follows that H,, has the scaling property?

Hyyoc (Z2-5)4, (126)

where §'is a screening parameter (in our helium-like example 1s2p, §'is the screening parameter
for the 2p electron).T The energy difference E; — E, is essentially the difference between two
energies belonging to the same configuration, and the Z-dependence will be approximately

E,—Eyoc (Z—S5) (127)

(see, for example, Layzer (1959) or Edlén (1964)). At sufficiently high Z, relativistic terms of the
type a?(Z —8)* will start to become significant on the right-hand side of (127), but the term in
(Z—S) will still be the leading term.

Inserting these scaling propertiesinto (124) it follows that the asymptotic form of £2'¢ for large Z
and fixed effective energy K? of the colliding electron is

A" Boa*(Z-8)2 Ca*(Z-S)8
QIC~—Z—2+ (22 ) + (Z2 ) +0(af). (128)
At sufficiently high Z, Z—§ ~ Z and we may write
Q16 ~ 4 + B'atZ + C'atZ4+ O (af). (129)

72

Expansion (129) is valid for Z large, but not so large as to violate condition (106). Thus as with
expansion (105), we must not interpret (129) as an expansion valid in the limit Z - co. However,
it is impossible to write down any expansion valid in the limit Z->oco within any relativistic
approximation which assumes a point nucleus (see Ermolaev & Jones (1973) for a brief discussion
ofrange of validity of bound state solutions of the Dirac equation; inspection of equations (9), (10)
and (11) of Walker (1974) will also show that s; and p, free wavefunctions are not physically
meaningful for Z > 137). Also, in the limit Z— oo intractable problems involving higher order
quantum electrodynamic corrections will occur.

For fixed K2, 4’, B’ and C’ in (129) are constants; they have primes to distinguish them from
quantities 4, B and C of expansion (104). Contrasting (129) and (104), we note that in (129) the
terms in «? and «* contain higher powers of Z than the corresponding terms of (104), so that
intermediate coupling effects become important at lower values of Z than relativistic effects
involving the colliding electron. Also, in (104) the coeflicients, 4, B and C will be of the same
order of magnitude, whereas in cases of interest B” and C’ may be an order or several orders of
magnitude greater than 4’, for example when A4’ corresponds to a scaled exchange collision
strength as in (125).

Although the expansion (129) has been derived for a helium-like target, similar expansions
hold for more complex systems, including transitions where both initial and final states are
affected by intermediate coupling.

t The other fs. interactions scale as (Z—8)3 (see, for example, Jones 1971.) Note also that Hi, is a matrix
element of some subset of I, (equation (3)), which has the factor o2 left out of it by definition. Thus equation

(126) does not include a factor of a? on the right hand side, since & has already appeared as the perturbation
parameter in (115) and the following equations.
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8. PRACGTICAL PROCEDURES FOR THE CALCULATION OF R-MATRICES
8.1. Calculations which use the jJ-coupling representation throughout

The most obvious procedure for the calculation of R-matrices within the framework of the
present theory would involve setting up channel lists of the form I';S; L; J;[jJ and then carrying
out the complete calculation in this representation. This method has the following disadvantages:

(i) The jJ-coupling channel list will be longer than the corresponding LS-coupling list by a
factor of roughly four. This will require more storage for channel lists and various other quantities.
Also, within a Breit-Pauli approximation the set of quantum numbers I';S; L, J; [jJ overspecify
the system, since the colliding electron wavefunctions for j = {+} (! # 0) are identical.

(i1) In the region where the Breit—Pauli approximation is valid the non-relativistic contribu-
tion R, to R, will dominate. Non-relativistic R-matrices are most conveniently calculated in
LS§-coupling.

This method has the advantage that the target energies include fine structure splittings, and
thus the energy of the colliding electron will take into account the target fine structure. This is
important in cases such as that considered by Burke & Mitchell (1974), when the scattering phase
is varying rapidly with the energy (at a resonance, for example). However, it is not necessary to
use the full jJ-coupling method to take this type of effect into account, as we will discuss in § 8.2.
In the author’s opinion, the disadvantages of this method considerably outweigh any advantages
which it might have.

8.2. Transformation methods based upon LS-coupling reduced matrix elements
8.2.1. General description of the procedure

This method is more elegant than that of §8.1 in that, firstly, no superfluous information is
stored, and secondly, it involves three logical steps, with the possibility of examining the results
of each step as the calculation proceeds. The steps are as follows:

(1) The non-relativistic R-matrices Ryr are calculated in LS-coupling.
(ii) The reduced matrix elements RME (equation (69)) are evaluated.

(iii) Equation (69) may now be applied to obtain R, (I';S; L; J;ijJM; I';S; Ly J il TM).
This could be done by using a computer program resembling the program jajomof Saraph (1972).
JajoM transforms the R, to a ‘pair-coupling’ representation in which neither jnor J appear (see
Appendix A). The visualized computer routine would need to transform Ryr and RME to jJ
coupling by means of (68).

We note aslight inconsistency in this procedure in that energies 42 used in the calculation of Ry
are referred to the non-relativistic target energies rather than to the relativistic ones. This will not
be a valid approximation in cases where R is varying rapidly with %2, when one should use the
correct target energies. However, this difficulty may be overcome by use of an interpolation
procedure in which a quantity slowly varying with energy is calculated; the R-matrices are
deduced by an energy dependent transformation (see, for example, Burke & Mitchell 1974).

Once jJ-coupling R-matrices have been obtained, they may be used to deduce a wealth of
information such as spin—flip cross-sections, total and differential cross-sections, electron-spin
polarizations, and the polarization of line radiation emitted after electron impact excitation.

64-2
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8.2.2. Calculation of the reduced matrix elements RME; formulation for the spin—orbit interaction

We outline the calculation of RME (I7,S; L;l;SL; I'y, Sy, L1, S"L") for the most important of the
fine structure interactions, namely the spin—orbit interaction. We would expect that this would
give most of the important physics in the R-matrices for the reasons that (i) mutual spin—orbit and
spin—other-orbit interactions with undistorted closed shells behave like one-body spin—orbit
interaction (Blume & Watson 1962; de-Shalit & Talmi 1963, ch. 22); (ii) spin-spin interaction
with undistorted closed shells vanish (Elliot 1953). A suitably adjusted spin—orbit potential could
therefore account for all fine structure interactions with the target closed shells.

We use a more general type of wavefunction than we used in §3 or §5. We impose the
condition that the radial functions for the colliding electron are all orthogonal to those of the
target, that is (P,|F;) = 0. This implies no restriction on the functions ¥ for the (N4 1) electron
system provided that we add to ¥ a suitable linear combination of functions @; which have the
form of bound state functions for the (N + 1) electron problem. The functions @, are called bound
channels and the number of such channels is denoted by NCHB.T The expression (18) is then

replaced by: v NCHF o NCHB o (130)
= it 3C4s 130
= “~

7

J

where werefer to the NCHF states ©; = O (1S, L;1;SL) asfree channels. The @, are given by (85).
Eissner & Seaton (1972) give reasons for including a set of bound channels @;, and discuss the
variational procedure which is used to obtain the coefficients ¢;. Use of this formalism considerably
simplifies the calculation of the quantities RME.

The matrix elements of an operator O, between functions of the form (130) are given by:

(P|O[F) = 3<0:{O0;) + 5 (0] O | D) ey + 3 ¢ D; [0 [0p) + 3 i P;| O[Dyrp ey (131)
i, s J Js% 3>

We will be interested in cases when the operator O represents a fine structure interaction. Then

from (69) we see that RME = (¥ O|¥), }

132
with 0=R, S, (0<Fk<2). (132)

The reduced matrix element RME will therefore comprise sums over three distinct types of
reduced matrix elements, those between pairs of free channels, those between free and bound
channels, and those between pairs of bound channels. We separately consider methods of
calculating these types of matrix elements. Before doing so we define

N+1
Fav(soy =5 L4V o
j=1 r]- drj
N 1dp (133)
) = ——1.- s,
F®(s0) Zna, L s
(1) Matrix elements between free channels ©;
(LS, Lysl; SLI| F&+D(s0) || ISy Ly sty S'L”y
= (I S; LislySL| F®)(s0) | L'y Sy LypslS'L"y
+<I’iSiLisli SL ——Lﬂlz\pr1 “Sn41 I’i,Si,Li,sli,S’L'>. (134)
Ty A7

T We use here the FORTRAN notation introduced by Eissner & Seaton (1972).
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Noting that F¥(so) operates only upon (S;,L;) and that Iy, sy, operates only upon (s,7),
we may use the relations

. R S Tk .,
Cua| R 37377 = 80 ) LI 5y 1 ) (= D L G R0, (139
where Ry (1) acts only on the first part of the composite system and
- / (S Sk letii+ig+d
Grgad ] Se(2) [J1sad "> = 0(Ju ) [J']E i g (= DT[] Gy || S(2) |72, (136)

where §,,(2) acts only on the second part of the system (Brink & Satchler 1968). Itis necessary to
apply these relations to the spin and orbital parts of the system separately. Using (135) we obtain

(T8, L;sISL)| F(so) | TS5 Ly sl'S"L"y

S S K(L L k
= 80y 1) (= O rssemsings s, L o 4N }

X (T8, L) F@(50) [ TSy Ly f F.F, dr. (137)
0
Using (136) we obtain
1 dV

TN+ d’N +1

= O(IyS;Ly; TSy Ly) (— 1)S+I+SitLithtlie 9387 L', [,]}

S 8 KL L &k © 1dV
1 (L + L F.——F.,
X {% % Sz} {l' L. [@} 2\/[3l1(l@ 1)] 8“@3 ll)J.O Ty dr ¢ di’, (138)

K3 K3

Ivii Sy

<FSL sl SL|| - TS, Lysly S’L'>

where we have also used
ALy = QU+ DROEL) and CH| S| = 143 (139)
(Brink & Satchler 1968, appendix VI). Hence substituting (137) and (138) into (134) we obtain

(TS, Lysly SL| FND(s0) || Ty Sy Ly sl S'Ly

s My 1
i 2 i

= 81, 1) (- s, oS, L g s i LT
I8, L)| F™(s0) | I 8, L, >f Fy Fydr+ 8 (L, 1) 8 (I8 Ly, TSy, L) (= 1)SHEASH Lkl

oS S KR\(L L
X 245 L L1 { 3 S}{z I

© 1dV
A LRE VRS IR e (140)
Hence matrix elements of the spin—orbit interaction between pairs of free channels take the form
1dV

(O FOVD(s0) [0, = ais(s0) (FIFe) + byc(s0) (i[5

Fy), (141)

where a;;(so) depends upon spin-orbit interaction within the target, and b,;(so) is a purely
algebraic factor. A method of calculating (I";S; L;| F™(so) | I';S;; L;y and hence a,;(so) will be
discussed in the next section.

(i) Matrix elements between free channels and bound channels or between bound channels. In these cases
the algebra involved is somewhat different, since the bound channels are treated as a complete
system (not as a composite system) when calculating vector coupling coefficients for the whole

system. The vector coupling coefficients may be obtained by using either fractional parentage
64-3
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techniques, or the Slater determinant expansion method. The latter method has been described
by Condon & Shortley (1951) and was applied to the atomic structure problem by Eissner &
Nussbaumer (1969). Jones (1970) applied the technique to the evaluation of the spin-orbit matrix
elements between states of bound atomic systems. The Slater determinant method is particularly
suited to the computer, and it is straightforward to maintain phase consistency. We will describe
the calculation of the various reduced matrix elements with specific regard to the Slater deter-
minant expansion method, but the basic ideas will apply to any coupling method.

It may be shown that
1dv

(O Po9(50) [ By = e 50) (Fy| 5

l;), (142)

where ¢;;,(so) is an algebraic coefficient, and it is understood that y depends on 7 and j'. We now
consider the calculation of the coefficients ¢;;(so). To do this we first write down the expansions
of the functions y;, @;» and @, in terms of Slater determinants. At this stage it is convenient to
adopt a representation in which the target configurations are unmixed. One can then transform
to a configuration-mixing representation by means of (110), i.e.

Xi(riSiLiMs,-ML,»lxv ey ®y) = X aSiEi(Ty, Cyay) x(Cyoy Sy Ly Mg, My, | %3, ..., #y).  (143)

Ciay
Free channel functions @(C;«,S; L, ISLM¢M;) may be transformed to functions
OIS, L, ISLMgM;)
by the same transformation (143). The target function may be expanded thus:

(C &; S L; MS,ML l RATRE xN) = Z Cﬂll,lnlmﬂ;%ﬂ; 110/_;;?]21;2 <7’l1 llﬂlml e By lNﬂNle LATREED xN>)
(144)

where the summation extends over all Slater states « belonging to configuration C; and having
azimuthal quantum numbers (Mg, My, ),

oo Iy o o;SiLg
pamy...pymyd Mg My;

is a vector coupling coeflicient and {ny l; m; p1, ... ny lymy | %5 ... %y)isaSlater determinant. The
bound channel functions can similarly be expanded in (N + 1) electron Slater determinants

;(C;(N+1) BSLMs M)
= Z mmlmﬂygﬁml"MsML by pymy, .., ”N+1lN+1ﬂN+1mN+1| Xy eees ¥yp1),  (145)
where C;(N + 1) is the configuration of the bound channel and £ is a degeneracy parameter. The

summation index runs over all Slater states & with the same Mg M. Finally we can combine (144)
with (85) in order to obtain the expansion of the free channel functions

0,(C;0,S; L, ISLMg M;)
= Z 2[ lg?g %ﬁscﬁz 7Il’LML C,ulml'",uvmjv; ]%QSM ]
MSiML{ u
rm

N+1
[ S (= r 1 ol ity i) O lepml ), (140
p=

where the quantity in square brackets on the right-hand side of (146) is an effective vector-
coupling coefficient for the (N+ 1) electron Slater determinants, which are represented by the
quantity enclosed by curly brackets in (146).


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRON-ATOM SCATTERING 617

Consider first matrix elements
(O4(Cy 01y, LyISLM My) [V (50) |, (Cp (N + 1) AS'L' M M.

The functions @ and @ in this matrix element can now be expanded according to (145) and (146),
so that the matrix element is expressed in terms of matrix elements between uncoupled anti-
symmetric states (that is, between Slater determinants). The matrix elements between Slater
determinants may be easily evaluated by using methods described by Condon & Shortley (1951,
ch. 6). For the one electron spin—orbit operator which we are considering here the matrix elements
between N or (N + 1)-electron Slater determinants reduce to sums over matrix elements between
one-electron functions:

1dV
<nl,um‘—r—al's

n'l! ,u'm'> =0(LI)S(m+p,m +u')
{8 (s ') pm+ 38 (p, ' £ 1) J[(I=m+3) (I +m+ )]}
1dv n'l> (147)

X <nl e
(Condon & Shortley, ch. 8). The expression (147) can also be written for free wavefunctions, in
which case z (or #) will be replaced by the channel labels ¢ (or ¢*) specifying the radial function
F; uniquely. In the case of matrix-elements of the form {(0,|O|®; the two states involved will
always differ in the quantum numbers of one pair of electrons, resulting in the single term which
appears on the right-hand side of (142).
The reduced matrix elements may be obtained from the Wigner—Eckart theorem thus:

(C; ;8 L1, SL)| F&+(s0) | C;o(N +1) BSLY
_ (O(CyoyS; Lyl SLMy My) | E®+0(s0) | Dy (Cy (N +1) BS'L' M My))

S’ 1 S L' 1 L
Ciru Ciz .
My S_M:S‘MS My Myp—-Mj7, My,

, (148)
provided that neither of the Clebsch—Gordan coefficients in the denominator of the right-hand
side vanish. The numerator of (148) will consist of a product of an algebraic factor and a radial
integral; the algebraic coefficient ¢;;,(so) may therefore be deduced from (148).

Very similar procedures may be used to calculate the reduced matrix elements:

(| FA¥(s0) @) and ;]| FN(so) | e-

Knowing the elements {y;|| F™(so) |x;» we can calculate the coefficients a;;(so). Hence we
finally obtain an expression for RME in terms of radial integrals involving the wavefunction of
the colliding electron

)

F) + 363, F(50) | @, ¢ (149)
i3’

1dv

r dr

1dv

RME = Z{aii’(so) (F3|Fy) +byi0(s0) (E 14

E)} + X ¢;5:(s0) ¢5r (Fz
i’

1dV

f —————
+5} cie;;(s0) (P?, T

The right-hand side of (149) is similar in form to the reduced radiative matrix elements obtained
when applying a similar formalism to the calculation of non-relativistic photoionization cross-
sections (see, for example, Luke 1973 and Jones 1974).
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8.2.3. Discussion ;

We note that the coefficients a,;, by, ¢;;» and the numbers (C; SSL| F&+D | C; £8'L") will be the
same for any one-body spin—orbit type interaction involving the colliding electron. As remarked
carlier, the spin-other-orbit and mutual spin-orbit interactions with closed shells behave like one-
body spin—orbit interactions. Thus one could generalize the theory of Blume & Watson (1962) for
the electron-atom scattering problem in the case of targets with closed shells. We put

© 1dV
Cir :fo ﬁi;a—;bi’dra (150)

where §;;. is a ‘free—free spin—orbit parameter’. Application of the Blume & Watson theory would
mean replacing ¢;; by a corrected spin-orbit parameter ;.. The parameter § will be given by
an expression similar to that for £ which Blume & Watson give in their paper.

Two further points of some practical consequence should be mentioned.

(1) It would appear from condition (28) that the Breit—Pauli method would not be applicable
to electron heavy-atom scattering. In particular the Breit—Pauli method would give a poor
description of the properties of the inner electrons of the target (Grant 1970). However, it would be
possible to use a hybrid method in which the relativistic core of the target is described by say
Hartree-Fock-Dirac wavefunctions, and the valence electrons and the colliding electron are
described within the framework of the Breit-Pauli approximation. This hybrid approach may
be satisfactory for the following reasons:

(a) colliding and valence electrons will not ‘see’ a strong potential, since the core shields them
from much of the nuclear field; hence condition (28) will hold for these electrons. Grant (1970)
pointed out that although the outer electrons of heavy atoms move non-relativistically, the
relativistic distortion of the charge distribution in inner shells affects the outer electrons in a non-
trivial way. This objection is removed if one uses Dirac-type functions to describe the core. In
practice one would construct a central core potential from the relativistic functions and include
itin the operator %, (equation (60)) (see Burke & Seaton (1971) for more details on the treatment of
closed shells in the coupled equations).

(6) One could solve the coupled equations for the colliding electrons in the central field of the
core plus the (non-central) field of the valence electrons. One could then use all available
techniques (including use of semi-empirical polarization potentials) to obtain accurate non-
relativistic wavefunctions and R-matrices. These would then be used in the calculation of RME
and R,,,. By contrast, both formulations and computer programs for solving the Dirac coupled
integro-differential equations (Carse & Walker 1973) are still at a fairly rudimentary stage of
development. The methods suggested here can utilize the relatively highly developed theory and
computer programs associated with the non-relativistic coupled equations (see, for example,
Burke & Seaton 1971).

(ii) Insome systems, the breakdown of LS-coupling may be important, and so calculations of
RME and R, (equation (68)) should take into account intermediate coupling. This may be
done by applying the transformation (108) to R, (transformation (108) can equally be applied
to the R, of (68) as to non-relativistic R-matrices).

In summary, in this section we have described how the reduced matrix element RME can be
calculated for spin-orbit interaction. We have mentioned how the theory may be straight-
forwardly refined to take into account mutual spin-orbit and spin-other-orbit interactions
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between the colliding electron and any closed shells of the target. We have not discussed how to
take into account two-body fine structure interactions between the colliding electron and valence
electrons. However, one would expect such interactions to be much less important than spin—
orbit interaction (cf. interactions between valence electrons in the structure problem, Jones
(19714)). Finally, we have pointed out how one may also take into account intermediate coupling
in the target.

9. CONCLUSION

We summarize the principal points developed in this paper:

(i) Itispossible to apply the Breit—Pauli method to the electron-atom scattering problem. The
Kohn variational principle has been specialized for the Breit-Pauli hamiltonian.

(i1) To order &2 fine structure interactions between the colliding electron and the target make
no contributions to total collision strengths, provided that summation over fine structure levels of
the target is carried out.

(iii) We have discussed how the non-fine structure interactions (that is, the Darwin, spin—spin
contact and orbit-orbit interactions) can be introduced into the equations satisfied by the
colliding electron wavefunction. The two-body Darwin and/or spin—spin contact terms can be
introduced into the equations by simply adding correction integrals X, onto the Slater integrals
R, of the usual non-relativistic collision theory.

(iv) An asymptotic Z-expansion has been derived for collision strengths, which takes account
of relativistic interactions between the colliding electron and the target. The validity of retaining
the contributions of «* in this expansion has been discussed.

(v) The effect of breakdown of LS-coupling in the target upon the collision strengths has been
discussed. An asymptotic Z-expansion for intermediate coupling collision strengths has been
derived, and this has been contrasted with the expansion mentioned in (iv).

(vi) Wehavedescribed a practical method for calculation of collision strengths, including both
relativistic effects involving the colliding electron and those involving the target.

There are a number of areas in which further work is desirable. Firstly, in connexion with point
(iii) it would be interesting to make calculations of total collision strengths for electron-hydrogen-
like systems. As a first step, the two-body Darwin term could be included; the calculations could
be carried out for the same nuclear charges Z and energies as Walker (1974). Direct comparison
with Walker’s work could possibly give further information about the accuracy and the range of
validity of the Breit-Pauli method. Inclusion of spin—spin contact and orbit—orbit terms would
make another interesting extension of this line of investigation. Secondly, development of com-
puter programs to calculate R-matrices R, as described in § 8 is of relevance to experimental
studies of electron-atom collisions (Bedersen 1969, 1970; Kleinpoppen 1971). Oncesuch R-matrices
have been obtained, one can calculate differential cross-sections, spin—flip cross-sections and
electron spin-polarizations. A third task remains, namely that of deriving expressions for calcu-
lation of these quantities (differential cross-sections, etc.) from J;j coupling R or 7-matrices.
Moores & Norcross (1972) have given such expressions for the non-relativistic treatment of
electron-sodium scattering. It should not be difficult to derive such expressions within the
approximations discussed in the present paper.

I should like to thank Professor M. J.Seaton, F.R.S., for suggesting this problem and for a
number of helpful discussions relating to it. I am also very grateful to Dr D. W. Walker for
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extensive discussions on various aspects of the problem, and for communicating to me details of
his work in advance of publication. I would also like to thank the following: Professor E. A. Power
for help in understanding some of the difficulties involving the orbit—orbit interaction; Dr H. E.
Saraph for discussions on some of the material in § 8, and for some help in my attempts to program
this problem; Dr D.R. Flower also in connexion with the material in §8; Dr P.J. Storey and
Dr H. E. Mason for their investigation of the phase difficulties mentioned in § 8. This work was
supported by the Science Research Council.

APPENDIX A. DERIVATION OF FORMULAE FOR TRANSFORMATION OF
NON-RELATIVISTIC R-MATRICES TO INTERMEDIATE COUPLING

We will derive here the algebraic transformation required to obtain J; j-coupling R-matrices
from LS-coupling R-matrices, and expressions for the ‘term-coupling’ coefficients, which intro-
duce the effect of breakdown of target LS-coupling into the R-matrices.

The notation set out in §3.3.1 will be used in the following discussion. Consider first the
algebraic transformation:

|CrasS;LiTyslj; TMY = % (S;Lysly SLMgMy| S, Ly J;slj; TMy |Cyoe, S Lysly SLMg My (A1)
Mg My,
This transformation may be written explicitly using the rule for the recoupling of the four angular
momenta S, L, J;, j. (Brink & Satchler 1968, ch. III, equation (3.24)).

|Cy oS Ly Jysljs JM)

3

S L,
=[jlt 3 [SL1Es 1 j Gyt | CooS; Lysl; SLMgMyy.  (A2)
SLMgMj, S L J

In practice, the transformation which we require will not be purely algebraic as in (A 2), but will
relate a configuration-mixed LS-coupled target and an intermediate coupling target alsoincluding
configuration mixing. Thus in LS-coupling the eigenfunction of the (N + 1)-electron system
in a configuration mixing representation may be written

| Iy S; Ly sty SLMg M)y =CZ {Cya;S; Li| Iy S; Lyy ICi‘“iSiLiSk SLMg M. (A 3)
Similarly |48, Lysli; JMY = % {Cy0,8,LiJy| A, 05 |Cy S, Lo Jy s JM. (A4)
Cio;S; Ly

Since transformation (A 3) is unitary we may write:

|C1: oS Lysly SLMg My = Z(FiSiLi|Ci oSy Ly |P1:SiLiSZ; SLMg M) (A5)
I';

We now substitute (A 5) into the right-hand side of (A 2) and then apply the transformation (A 4)
to both sides of (A 2), obtaining:

|4, ;s TM

S Ly J;
=[LJjPF 3 IS L]%{S l j}CﬁsﬁLJi’l
SLMg My, S L J
x X [ X/ “iSiLiJiIAiJi> <FiSiLilCi a8 L] |FiSiLi51; SLMgM;y. (A6)
I'yS;L; Ciag

Equation (A 6) gives the desired transformation between 4,J; jJ and I';S; L;ISL representations.
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We now define:
fJi(A I,S,L) = E (L8 Li|Cyoey S; Ly Cyaey S; Ly A, Ty

(2Rl %
Ciog

= 3, a5iLi(T, Cyo,) b7i(4;, C; ;8 L), (A7)
Cia;
where a5i%i and 47 are defined in (110) and (111) respectively.
The R-matrix transformation may now be written down immediately by using (A 2) and (A 6)
giving
R(A, M T3 AT 307)
= X fr(4;, TS L) RIS, Ly J;1; T TyST Ly T UG ) fr,(45, T'iSi L), (A8)

SiLni
Si{Lir:
where
S, L, Jy (S, L. J
R(LYS, Ly i TiSIL T 'J)—[J,J,L,J']%Z[S,L]{% l j}{% v j'}
SL S L JI\S L J

x R(I; S, L, MSL, T, S,LL3SL).  (A9)

Transformation (A 8) corresponds to the transformation (11) of Saraph (1972). It should be
noted that Saraph’s equation (11) erroneously omits the summation indices I'; and I'y, but this
does not affect the operation of the computer program (H. E. Saraph 1973, private communica-
tion). It should also be noted that for reasons of technical convenience, Saraph transforms to
‘pair coupling’ where:

S, +L;,=J; J;+l=K and K+s=J.

The reader is referred to Saraph’s paper for further details. However, whether the J; j coupling
scheme or the pair coupling scheme is used, the same term coupling coefficients f;, defined by
(A7) will be valid.

AprrENDIX B. THE ORBIT- ORBIT INTERACTION
The matrix elements of the orbit—orbit interaction in an uncoupled representation are given
by the expression (93) of § 5.2.2. In this expression the quantity Z, is defined by:
Zy\(P)F;, Py Fy) = = AA+ 1) [Ty, v'3") = T (vi, v'7')]
1Ly + 1) = L (L + 1) = AQ+ D] [UM i, y'i") — U (i, y'8)]
+[L(G+ 1) = Le(ly + 1) = AA+ D] [UMR (zy, 17y') = U3y, i'y')]
LG+ =Ly +1) =AA+ D] [LG+1) ~ L (L +1) = A(A+ 1) ]
(A+3) e Aling it
(o ragy IV v+ WGy, 7))

s LP=2(oi, ') + Wiy, 7). (B1)

In (B1) the integrals 7%, U* and N* correspond to those defined by Beck (1969):

0 (P.(r))\ O (Fu(r
Ty = g [ [ mdnradn B0 i) o (20) & (B no)
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a 1 72

2 © (*o©
UMY ) = ey |, dradreBytn) B o Q- 1) el =ny)

- Q4 el —m Bl ngs (L), B3y

r U
20r,

1 if rj—r, >0
where e(ry—ry) = D R 4)
(ri=rs) {O if 7'1—72<0.} (B4
ol . - © [ rd
< Finally (i, i) = 4o [ 7 [ " andn By () i) Smen-r) Bn) Fe (). (B9)
~ >
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